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ANALYTIC QCD RUNNING COUPLING
WITH FINITE IR BEHAVIOUR
AND UNIVERSAL a5(0) VALUE

D.V.Shirkov, I.L.Solovtsov

As is known fom QED, a possible solution to the ghost-pole trouble can be obtained by

imposing the Q 2-analyticity imperative. Here, the pole is compensated by the o nonanalytic
contribution that results in finite coupling renormalization.

We apply this idea to QCD and arrive at the O 2 analytic o (Q). This solution corresponds

to perturbation expansion, obeys AF and, due to nonperturbative contribution, has a regular IR
behaviour. It does not contain any adjustable parameter and has a finite IR limit ©.(0) which

depends only on group symmetry factors.

In the one-loop approximation it is equal to 47 / B, = 1.40 and turns out to be surprisingly
stable with respect to higher order corrections. On the other hand, the IR behaviour of our new
analytic solution agrees with recent global low energy experimental estimates of o (Q 2).

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics,
JINR.

AnannTHyecKas Gerymas KoHcranTa cBazH KXJ
¢ KoHeyHsiM HK nosenennem
H YHHBepcalbHoe 3HaYeHHe Os(0)

A.B.Illupxos, H.J1.Conosyos

Kak u3pectro us K3]I, Bo3MOXHOe pellieHue npo6aeMsl IPH3PadHOTO HOTIOCA MOXET GhITh
TOMYYeHO HATOXEHHEM YCIOBHA AHATHTHYHOCTH MO O 2. Ilpu 3TOM NOMIOC KOMIIEHCHpYETCS
BHIPAXEHHEM, HERHATHTHYHEIM 11O O, KOTOPOE MPUBOAMT TaKXe K KOHEYHOH NMepeHOPMHUPOBKE
3apsaga.

Msl Henonssyem aTy uaelo mis ciydas KX u momygaem mis 0. (Q) aHATHTHYECKOE BBIpa-
Xerue. 310 pelieHye ofnanaer CBOACTBOM aCHMIITOTHYECKO!H CBOGOMBL, 2 €0 PErVIAPHOCTS B
HHppakpacHofl obnacti ofs3ana HenepTypGaTHBHbIM BiTagaM. OHO He COEEPXHT KOMOTHH-
TEJIBHBIX NTAPaMETPOB U B UH(PAKpacHOH 06/1acTH UMeeT KOHEUHSl npenen 0 (0), 3aBuCAIMHA
JIMIE OT CHMMETPHIHBIX haKTOPOB.

B oaHonetnepoM nNpHOIMXEHHH OH paBeH 0 (0) =4n/B, ~ 1.40 u oxassiBaercs
YAUBHTENbHO CTaGHILHBIM 1O OTHOLIGHHIO K BBICIUMM MOMpABKaM (TE€M CaMBIM CXEMHO-HH-
BapHaHTHEIM). [I0yd4eHHOe aHATHTHYECKOE PelEHHE TAKXE COMIACYeTCA C HENABHHMHU HHTET-
PILHIMH 3KCTIEPHMEHTATBHEIMH OLICHKaMH MoBefeHus o (0 98 uHpakpacHoi 06nacTy.

Pa6ota sumonuena B JlaGoparopuu Teopetiyeckoit husnky uM.H.H.Boromo6osa OUSTH.
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1. We recall first some results obtained in QED about 40 years ago. The QED effective
coupling ES(Q 2), being proportional to the transverse dressed photon propagator amplitude,

is an analytic function in the cut complex Q2 plane and satisfies the Killen-Lehmann
spectral representation. The «analytization procedure» elaborated in papers [1,2] consists of
three steps:

1) Find an explicit expression for o, (Q 2) in the space-like region by a standard RG

improvement of perturbative input. Continue this expression to the time-like Q 2 domain.

2) Caiculate the imaginary part of o, (- Q 2) on the cut and define the spectral density
pRG(o, a)y=Ima G( G, O).

3) Using the spectral representation with pp. in the integrand, define an analytic
o (D).

For one-loop massless QED, this procedure produces [2] an explicit expression (see
Eq.(2.6) in Ref.[2] or analogous QCD Eq.(2) below) which has the following properties:

a) It has no ghost pole;

b) Considered as a function of o in the vicinity of the point o = 0 it has an essential
singularity of the exp (- 3n/ ) type;

c) In the vicinity of this singularity for real and positive o it admits an asymptotic
‘expansion that coincides with usual perturbation theory;

d) It has a finite ultraviolet asymptotic limit, 0(eo, o) = 37, which does not depend on
the experimentally input value o0 ~ 1 /137.

The same procedure in the two-loop massless QED approximation yielded [2] a more
complicated expression with the same essential features.

2. To use the same technique in QCD one has to make two observations. First, since
ES(Q 2) has to be defined via a product of propagators and a vertex function, validity of the
spectral representation is not obvious. However, this validity has been established in Ref.[3]
on the basis of analytic properties of the vertex diagrams. Second, for QCD with an
arbitrary covariant gauge, the running of the coupling and gauge parameter are intercon-
nected. For simplicity, we assume that the MS scheme is used.

In the following we use the spectral representation in the nonsubtracted form

ae? 1] o(o, A)do
an o 6+02 '

aQ?d= (1)

The usual massless one-loop RG approximation yields the spectral function

pi(a, A) = — 1=in-%, B =11-

B(%+7) A%

wIN

"

Substituting p(l) into spectral representation Eq.(1) we get
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Q (GeV)

The behaviour of the analytic running coupling constant
a§” Eq.(2) versus Q at different A values

a1l 1 A’ 2
aan,s(Q)_ﬁO an2/A2+A2~Q2 ' @)

where we have used the QCD scale parameter A. The «analytic» running coupling Eq.(2)
has no ghost pole and its limiting value

o (0) = 4n /B, ©)

does not depend on A being a universal constant which depends only on group factors.
We have become accustomed to the idea that theory supplies us with a family of
possible curves for (_xs(Q 2) and one has to choose the «physical one» of them by comparing

with experiment. Here, in Eq.(2) the whole bunch of possible curves for ES(Q 2) correspon-

ding to different A have the same limit at Q 220 as shown on the Figure. For ne= 3itis

equal to
aD(0) = 4m /9 =~ 1.39. )

Another feature of Eq.(2) is the fact that its correct analytic properties in the IR domain
are provided by a nonperturbative contribution* like exp (- 1/ aBO).

*The connection between «Q > analyticity» and «o nonperturbativity» has been discussed in Ref.[4].
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To investigate the stability of the result, Eq.(4), with respect to the next loop correc-
tions, we have considered the two-loop approximation to &S(Q 2) in the form

2 B
=__ v Q" A 1o 38
aRG_BO[L-*bllnL]’ L= A2’ by g2’ B, =102 3 "f
0
and
@ N (() NI - &
p@(0, A) = , =i,
ke BoIR 2() + 1) A?
R =1+b n(N12+72), I0)=n+b, arccos 2’ =. ®)
I“+mn

The limiting two-loop value &(Sz)(O) is also specified only by group factors via BO and
Bl' Surprisingly, this value found by numerical calculation practically coincides. with the
one-loop result. For the MS scheme in a three-loop approximation Ei? )(0) changes by a few
per cent. Thus, the value '('is(O) is remarkably stable with respect to higher loop corrections
and is practically independent of renormalization scheme.

3. To fix A we use the reference point M = 1.78 GeV with ES(M 12) =0.33 £ 0.03 [S].
Corresponding solutions '&§l= l'2‘3)(Q 2) are very close to each other for the interval of
interest Q 2 <10 GeV2. For instance, at Q% =10 GeV? we have &{'(10) ~ &?(10) =
= 0.267, af)(w) = 0.265. Here, again we used n,=3 as the average number of active

f
quarks in the spectral density. This seems to be reasonable in the IR region.

For a more realistic description of the evolution of 'ds(Q 2) in the Euclidean region

3 GeV < @ < 100 GeV, one should take into account heavy quark thresholds. Using the
explicitly mass-dependent RG formalism [7] developed in the 50’s, a «smooth matching»
algorithm has been devised recently [6]. This can be given to correct analytic properties
while incorporating heavy quark thresholds.

The idea that ES(Q 2) can be frozen at small momentum has been recently discussed in

some papers (see, e.g., Ref.[8]). There seems to be experimental evidence indicating be-
haviour of this type for the QCD coupling. As the appropriate object for comparison with
our theoretical construction we use the average

k
Ak = [ 4002 A). ©)
0
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«Experimental» estimates for this integral are A(2 GeV)=10.52+0.10 GeV [9] and
A(2 GeV) = 0.57 £ 0.10 GeV [10]. Our one-loop results in case Eq.(2) for A are summari-

zed below for a few reference values of ES(M 3).

ES(MTZ) 0.34 0.36 - 0.38

AQ2 GeV) 0.50 0.52 0.55

Note here that a nonperturbative contribution, like the second term in Lh.s. of Eq.(2),
reveals itself even at moderate Q values by «slowing down» the velocity of the o (Q 2)

evolution. For instance, in the vicinity of ¢ and b quark thresholds at Q = 3 GeV it con-
tributes about 4% which could be essential for the resolution of the «discrepancy» between

DIS and Z, data for o (Q 2).

4. We have argued that a regular analytic behaviour for @ (Q ) in the IR reglon could

be provided by nonperturbatlvc contributions which can be considered as a sum of powers
of A2/Q2

Probably, our most curious result 1s the stability of a «long-range intensity of strong
interaction», ¢ (O), as well as the o (Q ) IR behaviour that turns out to agree reasonably

well with experimental estimates.
*On the other hand, the nonzero ES(O) value evidently contradicts the confinement pro-

perty. To satisfy this, one should have
&s(O) =0

as it has recently been emphasized by Nishijima [11] in the context of the connection
between asymptotic freedom (AF) and color confinement (CC).

It is possible to correlate this type of the IR limiting behaviour with the RG-improved
perturbative input and Q 2-analyticity by inserting a Castillejo—-Dalitz-Dyson zero into our
solution (see paper [12]). Such a generalyzed analytic solution will contain additional
parameters. In this construction there is no evident relation between AF and CC. Here, CC
is provided by nonperturbative contributions.

The authors would like to thank A.M.Baldin, A.L.Kataev and V.A Rubakov for useful
comments. Financial support of 1.S. by RFBR (grant 96-02-16126-a) is gratefully acknow-
ledged.
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